Dr. Petheő Gábor OTKA pályázatokhoz csatolandó közleményjegyzéke, Created on 2/24/2011 12:00 PM
Eredeti közlemények (cikkek):
1: Petheő GL, Orient A, Baráth M, Kovács I, Réthi B, Lányi A, Rajki A, Rajnavölgyi E, Geiszt M. Molecular and functional characterization of Hv1 proton channel in human granulocytes. PLoS One. 2010 Nov 23;5(11):e14081. IF: 4.351 (2010-ben), Cit:0 2: Petheo GL, Girardin NC, Goossens N, Molnar GZ, Demaurex N. Role of nucleotides and phosphoinositides in the stability of electron and proton currents associated with the phagocytic NADPH oxidase. Biochem J. 2006 Dec 15;400(3):431-8. IF:4.100, Cit:6 3: Demaurex N, Petheo GL. Electron and proton transport by NADPH oxidases. Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2315-25. If:4.128 (2004-ben), Cit:19 (Review) 4: Petheo GL, Demaurex N. Voltage- and NADPH-dependence of electron currents generated by the phagocytic NADPH oxidase.Biochem J. 2005 Jun 1;388(Pt 2):485-91. If:4.278 (2004-ben), Cit:9 5: Petheo GL, Maturana A, Spat A, Demaurex N. Interactions between electron and proton currents in excised patches from human eosinophils. J Gen Physiol. 2003 Dec;122(6):713-26. If:5.120, Cit:10 6: Makara JK, Koncz P, Petheo GL, Spat A. Role of cell volume in K+-induced Ca2+ signaling by rat adrenal glomerulosa cells. Endocrinology. 2003 Nov;144(11):4916-22. If:5.063, Cit:1 7: Molnar Z, Petheo GL, Fulop C, Spat A. Effects of osmotic changes on the chemoreceptor cell of rat carotid body. J Physiol. 2003 Jan 15;546(Pt 2):471-81. If:4.352, Cit:5 8: Petheo GL, Molnar Z, Roka A, Makara JK, Spat A. A pH-sensitive chloride current in the chemoreceptor cell of rat carotid body. J Physiol. 2001 Aug 15;535(Pt 1):95-106. If:4.476, Cit:8 9: Czirjak G, Petheo GL, Spat A, Enyedi P. Inhibition of TASK-1 potassium channel by phospholipase C. Am J Physiol Cell Physiol. 2001 Aug;281(2):C700-8. If:3.896, Cit:52 10: Makara JK, Petheo GL, Toth A, Spat A. pH-sensitive inwardly rectifying chloride current in cultured rat cortical astrocytes. Glia. 2001 Apr 1;34(1):52-8. If:4.193, Cit:6 11: Makara JK, Petheo GL, Toth A, Spat A. Effect of osmolarity on aldosterone production by rat adrenal glomerulosa cells. Endocrinology. 2000 May;141(5):1705-10. If:4.79, Cit:6 12: Deak F, Lasztoczi B, Pacher P, Petheo GL, Valeria Kecskemeti, Spat A. Inhibition of voltage-gated calcium channels by fluoxetine in rat hippocampal pyramidal cells. Neuropharmacology. 2000 Apr 3;39(6):1029-36. If:4.125, Cit:40
Dr. Petheő Gábor OTKA pályázatokhoz csatolandó közleményjegyzéke, Created on 2/24/2011 12:00 PM
13: Varnai P, Petheo GL, Makara JK, Spat A. Electrophysiological study on the high K+ sensitivity of rat glomerulosa cells. Pflugers Arch. 1998 Feb;435(3):429-31. If:2.529, Cit:8 A fenti közlemények kumulatív impakt faktora: 56.216 összes/független idézettsége: 217/165, H-index: 8 Konferencia kiadványban megjelent idézhető absztraktok: Petheo GL, Demaurex N Voltage-dependence of the phagocyte NADPH-oxidase measured in excised patches BIOPHYSICAL JOURNAL 86 (1): 555A-555A Part 2 Suppl. S JAN 2004 Petheo GL, Molnar Z, Roka A, et al. Characterization of a pH-sensitive anion current in the chemoreceptor cell of rat carotid body JOURNAL OF PHYSIOLOGY-LONDON 526: 5P-5P Suppl. S AUG 2000 Petheo GL, Varnai P, Spat A Electrophysiological differences between rat adrenal glomerulosa and fasciculata cells NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY 356 (4): 106-106 Suppl. 1 1997 Spat A, Varnai P, Deak F, Petheo G Potassium activates an inward rectifying calcium current (I-gl) NAUNYN- SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY 356 (4): 100-100 Suppl. 1 1997 Közleményeimet idéző független munkák (közlemények számmal jelezve a fentebbi listának megfelelően). A válogatott közlemények sorszáma vastaggal szedve:
1: 0 2: 1. Musset B, Cherny VV, Morgan D and DeCoursey TE (2009) The intimate and mysterious
relationship between proton channels and NADPH oxidase. Febs Letters 583:7-12
2. DeCoursey TE (2008) Voltage-gated proton channels: what's next ? Journal of Physiology-
3. DeCoursey TE (2008) Voltage-gated proton channels. Cellular and Molecular Life Sciences
4. Ahluwalia J (2008) Characterisation of electron currents generated by the human neutrophil
NADPH oxidase. Biochemical and Biophysical Research Communications 368:656-661
5. DeCoursey TE and Cherny VV (2007) Pharmacology of voltage-gated proton channels.
Current Pharmaceutical Design 13:2406-2420
Dr. Petheő Gábor OTKA pályázatokhoz csatolandó közleményjegyzéke, Created on 2/24/2011 12:00 PM
6. Morgan D, Cherny VV, Finnegan A, Bollinger J, Gelb MH and DeCoursey TE (2007)
Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA(2)alpha activity. Journal of Physiology-London 579:327-344
3: 1. Murphy R and DeCoursey TE (2006) Charge compensation during the phagocyte
respiratory burst. Biochimica et Biophysica Acta-Bioenergetics 1757:996-1011
2. Femling JK, Cherny VV, Morgan D, Rada B, Davis AP, Czirjak G, Enyedi P, England SK,
Moreland JG, Ligeti E, Nauseef WM et al (2006) The antibacterial activity of human neutrophils and eosinophils requires proton channels but not BK channels. Journal of General Physiology 127:659-672
3. DeCoursey TE (2010) Voltage-Gated Proton Channels Find Their Dream Job Managing the
Respiratory Burst in Phagocytes. Physiology 25:27-40
4. Li Q, Spencer NY, Oakley FD, Buettner GR and Engelhardt JF (2009) Endosomal Nox2
Facilitates Redox-Dependent Induction of NF-kappa B by TNF-alpha. Antioxidants & Redox Signaling 11:1249-1263
5. Oakley FD, Abbott D, Li Q and Engelhardt JF (2009) Signaling Components of Redox
Active Endosomes: The Redoxosomes. Antioxidants & Redox Signaling 11:1313-1333
6. Lamb FS, Moreland JG and Miller FJ (2009) Electrophysiology of Reactive Oxygen
Production in Signaling Endosomes. Antioxidants & Redox Signaling 11:1335-1347
7. Fisher AB (2009) Redox Signaling Across Cell Membranes. Antioxidants & Redox
8. Giambelluca MS and Gende OA (2009) Effect of glycine on the release of reactive oxygen
species in human neutrophils. International Immunopharmacology 9:32-37
9. Brechard S and Tschirhart EJ (2008) Regulation of superoxide production in neutrophils:
role of calcium influx. Journal of Leukocyte Biology 84:1223-1237
10. De Simoni A, Allen NJ and Attwell D (2008) Charge compensation for NADPH oxidase
activity in microglia in rat brain slices does not involve a proton current. European Journal of Neuroscience 28: 1146-1156
11. Nauseef WM (2008) Nox enzymes in immune cells. Seminars in Immunopathology 30:195-
12. Matteucci E and Giampietro O (2008) Flow cytometry study of leukocyte function: Analytical
comparison of methods and their applicability to clinical research. Current Medicinal Chemistry 15:596-603
13. Bogeski I, Mirceski V and Hoth M (2008) Probing the redox activity of T-lymphocytes
deposited at electrode surfaces with voltammetric methods. Clinical Chemistry and Laboratory Medicine 46:197-203
14. Cheng YM, Kelly T and Church J (2008) Potential contribution of a voltage-activated proton
conductance to acid extrusion from rat hippocampal neurons. Neuroscience 151:1084-1098
15. Morihata H, Kawawaki J, Okina M, Sakai H, Notomi T, Sawada M and Kuno M (2008) Early
and late activation of the voltage-gated proton channel during lactic acidosis through pH-dependent and -independent mechanisms. Pflugers Archiv-European Journal of Physiology 455:829-838
16. Lassegue B (2007) How does the chloride/proton antiporter ClC-3 control NADPH oxidase?
17. DeCoursey TE (2008) Voltage-gated proton channels: what's next ? Journal of Physiology-
Dr. Petheő Gábor OTKA pályázatokhoz csatolandó közleményjegyzéke, Created on 2/24/2011 12:00 PM
18. DeCoursey TE (2008) Voltage-gated proton channels. Cellular and Molecular Life Sciences
19. DeCoursey TE and Cherny VV (2007) Pharmacology of voltage-gated proton channels.
Current Pharmaceutical Design 13: 2406-2420
4: 1. Musset B, Smith SME, Rajan S, Cherny VV, Sujai S, Morgan D and DeCoursey TE (2010)
Zinc inhibition of monomeric and dimeric proton channels suggests cooperative gating. Journal of Physiology-London 588:1435-1449
2. Musset B, Capasso M, Cherny VV, Morgan D, Bhamrah M, Dyer MJS and DeCoursey TE
(2010) Identification of Thr(29) as a Critical Phosphorylation Site That Activates the Human Proton Channel Hvcn1 in Leukocytes. Journal of Biological Chemistry 285:5117-5121
3. Ramsey IS, Ruchti E, Kaczmarek JS and Clapham DE (2009) Hv1 proton channels are
required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proceedings of the National Academy of Sciences of the United States of America 106:7642-7647
4. Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Gudermann T, Schulz R, Seeger W,
Grimminger F and Weissmann N (2008) Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. European Respiratory Journal 32:1639-1651
5. Rada B, Hably C, Meczner A, Timar C, Lakatos G, Enyedi P and Ligeti E (2008) Role of
Nox2 in elimination of microorganisms. Seminars in Immunopathology 30:237-253
6. DeCoursey TE and Ligeti E (2005) Regulation and termination of NADPH oxidase activity.
Cellular and Molecular Life Sciences 62 :2173-2193
7. DeCoursey TE (2008) Voltage-gated proton channels. Cellular and Molecular Life Sciences
8. DeCoursey TE and Cherny VV (2007) Pharmacology of voltage-gated proton channels.
Current Pharmaceutical Design 13:2406-2420
9. Murphy R and DeCoursey TE (2006) Charge compensation during the phagocyte
respiratory burst. Biochimica et Biophysica Acta-Bioenergetics 1757:996-1011
5: 1. Nemeth T, Futosi K, Hably C, Brouns MR, Jakob SM, Kovacs M, Kertesz Z, Walzog B,
Settleman J and Mocsai A (2010) Neutrophil Functions and Autoimmune Arthritis in the Absence of p190RhoGAP: Generation and Analysis of a Novel Null Mutation in Mice. Journal of Immunology 185:3064-3075
2. DeCoursey TE (2010) Voltage-Gated Proton Channels Find Their Dream Job Managing the
Respiratory Burst in Phagocytes. Physiology 25:27-40
3. DeCoursey TE (2008) Voltage-gated proton channels: what's next ? Journal of Physiology-
4. DeCoursey TE (2008) Voltage-gated proton channels. Cellular and Molecular Life Sciences
5. DeCoursey TE and Cherny VV (2007) Pharmacology of voltage-gated proton channels.
Current Pharmaceutical Design 13:2406-2420
6. Morgan D, Cherny VV, Finnegan A, Bollinger J, Gelb MH and DeCoursey TE (2007)
Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA(2)alpha activity. Journal of Physiology-London 579:327-344
7. Rada BK, Geiszt M, Hably C and Ligeti E (2005) Consequences of the electrogenic
function of the phagocytic NADPH oxidase. Philosophical Transactions of the Royal Society B-Biological Sciences 360:2293-2300
Dr. Petheő Gábor OTKA pályázatokhoz csatolandó közleményjegyzéke, Created on 2/24/2011 12:00 PM
8. Morgan D, Cherny VV, Murphy R, Katz BZ and DeCoursey TE (2005) The pH dependence
of NADPH oxidase in human eosinophils. Journal of Physiology-London 569:419-431
9. DeCoursey TE and Ligeti E (2005) Regulation and termination of NADPH oxidase activity.
Cellular and Molecular Life Sciences 62 :2173-2193
10. Bankers-Fulbright JL, Kephart GM, Bartemes KR, Kita H and O'Grady SM (2004) Platelet-
activating factor stimulates cytoplasmic alkalinization and granule acidification in human eosinophils. Journal of Cell Science 117:5749-5757
1. Yamamoto S, Shioya T, Ehara T, Iwamoto T. Method and apparatus for studying cell
volume regulation. Folia Pharmacol Jap. 2010;135(6):245-9.
1. Muñoz-Cabello AM, Villadiego J, Toledo-Aral JJ, López-Barneo J, Echevarría M. AQP1
mediates water transport in the carotid body. Pflugers Archiv European Journal of Physiology. 2010;459(5):775-83.
2. Abudara V, Eyzaguirre C. Mechanical sensitivity of carotid body glomus cells.
Respiratory Physiology and Neurobiology. 2008;161(2):210-3.
3. Kumar P, Bin-Jaliah I. Adequate stimuli of the carotid body: More than an oxygen
sensor? Respiratory Physiology and Neurobiology. 2007;157(1):12-21.
4. Ward DS, Voter WA, Karan S. The effects of hypo- and hyperglycaemia on the hypoxic
ventilatory response in humans. J Physiol (Lond ). 2007;582(2):859-69.
5. Jiang RG, Eyzaguirre C. Calcium channels of cultured rat glomus cells in normoxia and
acute hypoxia. Brain Res. 2005;1031(1):56-66.
1. Abboud FM. In search of autonomic balance: The good, the bad, and the ugly. American
Journal of Physiology - Regulatory Integrative and Comparative Physiology. 2010;298(6):R1449-67.
2. Tan Z-, Lu Y, Whiteis CA, Simms AE, Paton JFR, Chapleau MW, et al. Chemoreceptor
hypersensitivity, sympathetic excitation, and overexpression of ASIC and TASK channels before the onset of hypertension in SHR. Circ Res. 2010;106(3):536-45.
3. Holzer P. Acid-sensitive ion channels and receptors [Internet]; 2009 [cited 2011 Feb 24].
4. Tan Z-, Lu Y, Whiteis CA, Benson CJ, Chapleau MW, Abboud FM. Acid-sensing ion
channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells. Circ Res. 2007;101(10):1009-19.
5. López-López JR, Pérez-García MT. An ASIC channel for acid chemotransduction. Circ
6. Pilarski JQ, Hempleman SC. Imidazole binding reagent diethyl pyrocarbonate (DEPC)
inhibits avian intrapulmonary chemoreceptor discharge in vivo. Respiratory Physiology and Neurobiology. 2006;150(2-3):144-54.
7. Putnam RW, Filosa JA, Ritucci NA. Cellular mechanisms involved in CO2 and acid
signaling in chemosensitive neurons. American Journal of Physiology - Cell Physiology. 2004;287(6 56-6):C1493-526.
8. Wray S, Smith RD. Mechanisms of action of pH-induced effects on vascular smooth
muscle. Mol Cell Biochem. 2004;263(1):163-72.
Dr. Petheő Gábor OTKA pályázatokhoz csatolandó közleményjegyzéke, Created on 2/24/2011 12:00 PM
9. Kim HS, Kam KY, Ryu PD, Hong SJ, Jeon JS, Jeon BH, et al. A gadolinium and pH-
sensitive hyperpolarization-activated cation current in acutely isolated single neurones from fasciola hepatica. Parasitology. 2002;125(5):423-30.
9:1. Niemeyer MI, Stutzin A and Sep+¦lveda FV (2002) A voltage-independent K+ conductance
activated by cell swelling in Ehrlich cells is modulated by a G-protein-mediated process. Biochimica et Biophysica Acta - Biomembranes 1562:1-5
2. Talley EM and Bayliss DA (2002) Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9)
potassium channels. Volatile anesthetics and neurotransmitters share a molecular site of action. Journal of Biological Chemistry 277:17733-17742
3. Sirois JE, Lynch III C and Bayliss DA (2002) Convergent and reciprocal modulation of a
leak K+ current and I<sub>h</sub> by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. Journal of Physiology 541:717-729
4. Han J, Truell J, Gnatenco C and Kim D (2002) Characterization of four types of background
potassium channels in rat cerebellar granule neurons. Journal of Physiology 542:431-444
5. Girard C, Tinel N, Terrenoire C, Romey G, Lazdunski M and Borsotto M (2002) p11, an
annexin II subunit, an auxiliary protein associated with the background K+ channel, TASK-1. EMBO Journal 21:4439-4448
6. O'Connell AD, Morton MJ and Hunter M (2002) Two-pore domain K+ channels - Molecular
sensors. Biochimica et Biophysica Acta - Biomembranes 1566:152-161
7. Han J, Gnatenco C, Sladek CD and Kim D (2003) Background and tandem-pore potassium
channels in magnocellular neurosecretory cells of the rat supraoptic nucleus. Journal of Physiology 546:625-639
8. Elliott JI and Higgins CF (2003) IKCa1 activity is required for cell shrinkage,
phosphatidylserine translocation and death in T lymphocyte apoptosis. EMBO Reports 4:189-194
9. Talley EM, Sirois JE, Lei Q and Bayliss DA (2003) Two-pore-domain (KCNK) potassium
channels: Dynamic roles in neuronal function. Neuroscientist 9:46-56
10. Lauritzen I, Zanzouri M, Honor+¬ E, Duprat F, Ehrengruber MU, Lazdunski M and Patel AJ
(2003) K+-dependent cerebellar granule neuron apoptosis. Role of TASK leak K+ channels. Journal of Biological Chemistry 278:32068-32076
11. Chemin J, Girard C, Duprat F, Lesage F, Romey G and Lazdunski M (2003) Mechanisms
underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO Journal 22:5403-5411
12. Borg JJ, Hancox JC, Hogg DS, James AF and Kozlowski RZ (2004) Actions of the anti-
oestrogen agent clomiphene on outward K+ currents in rat ventricular myocytes. Clinical and Experimental Pharmacology and Physiology 31:86-95
13. Wulff T, Hougaard C, Klaerke DA and Hoffmann EK (2004) Co-expression of
mCysLT<sub>1</sub> receptors and IK channels in Xenopus laevis oocytes elicits LTD<sub>4</sub>-stimulated IK current, independent of an increase in [Ca2+]<sub>i</sub>. Biochimica et Biophysica Acta - Biomembranes 1660:75-79
14. Patel AJ and Lazdunski M (2004) The 2P-domain K+ channels: Role in apoptosis and
tumorigenesis. Pflugers Archiv European Journal of Physiology 448:261-273
15. Cotten JF, Zou HL, Liu C, Au JD and Yost CS (2004) Identification of native rat cerebellar
granule cell currents due to background K channel KCNK5 (TASK-2). Molecular Brain Research 128:112-120
16. Holter J, Carter D, Leresche N, Crunelli V and Vincent P (2005) A TASK3 channel (KCNK9)
mutation in a genetic model of absence epilepsy. Journal of Molecular Neuroscience 25:37-51
Dr. Petheő Gábor OTKA pályázatokhoz csatolandó közleményjegyzéke, Created on 2/24/2011 12:00 PM
17. Chemin J, Patel AJ, Duprat F, Lauritzen I, Lazdunski M and Honor+¬ E (2005) A
phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO Journal 24:44-53
18. Larkman PM and Perkins EM (2005) A TASK-like pH- and amine-sensitive 'leak' K+
conductance regulates neonatal rat facial motoneuron excitability in vitro. European Journal of Neuroscience 21:679-691
19. Roh+ícs T, Lopes CMB, Michailidis I and Logothetis DE (2005) PI(4,5)P<sub>2</sub>
regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nature Neuroscience 8: 626-634
20. Roper P (2005) Frequency-dependent depletion of secretory vesicle pools modulates
bursting in vasopressin neurones of the rat supraoptic nucleus. Neurocomputing 65-66:485-491
21. Suh BC and Hille B (2005) Regulation of ion channels by phosphatidylinositol 4,5-
bisphosphate. Current Opinion in Neurobiology 15:370-378
22. Kim D (2005) Physiology and pharmacology of two-pore domain potassium channels.
Current Pharmaceutical Design 11:2717-2736
23. Besana A, Robinson RB and Feinmark SJ (2005) Lipids and two-pore domain K+ channels
in excitable cells. Prostaglandins and Other Lipid Mediators 77:103-110
24. Chen X, Talley EM, Patel N, Gomis A, McIntire WE, Dong B, Viana F, Garrison JC and
Bayliss DA (2006) Inhibition of a background potassium channel by Gq protein +¦-subunits. Proceedings of the National Academy of Sciences of the United States of America 103:3422-3427
25. Clark MA and Lambert NA (2006) Endogenous regulator of G-protein signaling proteins
regulate the kinetics of G+¦<sub>q/11</sub>-mediated modulation of ion channels in central nervous system neurons. Molecular Pharmacology 69:1280-1287
26. Meuth SG, Aller MI, Munsch T, Schuhmacher T, Seidenbecher T, Meuth P, Kleinschnitz C,
Pape HC, Wiendl H, Wisden W and Budde T (2006) The contribution of TWIK-related acid-sensitive K+-containing channels to the function of dorsal lateral geniculate thalamocortical relay neurons. Molecular Pharmacology 69:1468-1476
27. Holt AG, Asako M, Keith Duncan R, Lomax CA, Juiz JM and Altschuler RA (2006)
Deafness associated changes in expression of two-pore domain potassium channels in the rat cochlear nucleus. Hearing Research 216-217:146-153
28. Kang D and Kim D (2006) TREK-2 (K<sub>2P</sub>10.1) and TRESK
(K<sub>2P</sub>18.1) are major background K+ channels in dorsal root ganglion neurons. American Journal of Physiology - Cell Physiology 291:
29. Zanzouri M, Lauritzen I, Duprat F, Mazzuca M, Lesage F, Lazdunski M and Patel A (2006)
Membrane potential-regulated transcription of the resting K+ conductance TASK-3 via the calcineurin pathway. Journal of Biological Chemistry 281:28910-28918
30. Fujiwara Y and Kubo Y (2006) Regulation of the desensitization and ion selectivity of ATP-
gated P2X<sub>2</sub> channels by phosphoinositides. Journal of Physiology 576:135-149
31. Zanzouri M, Lauritzen I, Lazdunski M and Patel A (2006) The background K+ channel
TASK-3 is regulated at both the transcriptional and post-transcriptional levels. Biochemical and Biophysical Research Communications 348:1350-1357
32. Kang D, Han J and Kim D (2006) Mechanism of inhibition of TREK-2
(K<sub>2P</sub>10.1) by the G <sub>q</sub>-coupled M<sub>3</sub> muscarinic receptor. American Journal of Physiology - Cell Physiology 291:
33. Mathie A (2007) Neuronal two-pore-domain potassium channels and their regulation by G
protein-coupled receptors. Journal of Physiology 578:377-385
Dr. Petheő Gábor OTKA pályázatokhoz csatolandó közleményjegyzéke, Created on 2/24/2011 12:00 PM
34. Lotshaw DP (2007) Biophysical, pharmacological, and functional characteristics of cloned
and native mammalian two-pore domain K+ channels. Cell Biochemistry and Biophysics 47:209-256
35. Chemin J, Patel AJ, Delmas P, Sachs F, Lazdunski M and Honore E (2007) Regulation of
the Mechano-Gated K<sub>2P</sub> Channel TREK-1 by Membrane Phospholipids. Current Topics in Membranes 59:155-170
36. Veale EL, Kennard LE, Sutton GL, MacKenzie G, Sandu C and Mathie A (2007)
G+¦<sub>q</sub>-mediated regulation of TASK3 two-pore domain potassium channels: The role of protein kinase C. Molecular Pharmacology 71:1666-1675
37. Putzke C, Wemh+¦ner K, Sachse FB, Rinn+¬ S, Schlichth+¦rl G, Li XT, Ja+¬ L, Eckhardt I,
Wischmeyer E, Wulf H, Preisig-M++ller R et al (2007) The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovascular Research 75:59-68
38. Shirahata M, Balbir A, Otsubo T and Fitzgerald RS (2007) Role of acetylcholine in
neurotransmission of the carotid body. Respiratory Physiology and Neurobiology 157:93-105
39. Yuill KH, Stansfeld PJ, Ashmole I, Sutcliffe MJ and Stanfield PR (2007) The selectivity,
voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1: Contributions of the pore domains. Pflugers Archiv European Journal of Physiology 455:333-348
40. Duprat F, Lauritzen I, Patel A and Honor+¬ E (2007) The TASK background
K<sub>2P</sub> channels: chemo- and nutrient sensors. Trends in Neurosciences 30:573-580
41. Thyagarajan B, Lukacs V and Rohacs T (2008) Hydrolysis of phosphatidylinositol 4,5-
bisphosphate mediates calcium-induced inactivation of TRPV6 channels. Journal of Biological Chemistry 283:14980-14987
42. Doroshenko P and Renaud LP (2009) Acid-sensitive TASK-like K+ conductances
contribute to resting membrane potential and to orexin-induced membrane depolarization in rat thalamic paraventricular nucleus neurons. Neuroscience 158:1560-1570
43. Matavel A and Lopes CMB (2009) PKC activation and PIP<sub>2</sub> depletion underlie
biphasic regulation of IKs by Gq-coupled receptors. Journal of Molecular and Cellular Cardiology 46:704-712
44. Tang B, Li Y, Nagaraj C, Morty RE, Gabor S, Stacher E, Voswinckel R, Weissmann N,
Leithner K, Olschewski H and Olschewski A (2009) Endothelin-1 inhibits background two-pore domain channel TASK-1 in primary human pulmonary artery smooth muscle cells. American Journal of Respiratory Cell and Molecular Biology 41:476-483
45. Thompson CM, Troche K, Jordan HL, Barr BL and Wyatt CN (2010) Evidence for
functional, inhibitory, histamine H3 receptors in rat carotid body Type I cells. Neuroscience Letters 471:15-19
46. Koizumi H, Smerin SE, Yamanishi T, Moorjani BR, Zhang R and Smith JC (2010) TASK
channels contribute to the K+-dominated leak current regulating respiratory rhythm generation in vitro. Journal of Neuroscience 30:4273-4284
47. Ortiz FC and Varas R (2010) Muscarinic modulation of TASK-like background potassium
channel in rat carotid body chemoreceptor cells. Brain Research 1323:74-83
48. Nogueira EF, Gerry D, Mantero F, Mariniello B and Rainey WE (2010) The role of TASK1
in aldosterone production and its expression in normal adrenal and aldosterone-producing adenomas. Clinical Endocrinology 73:22-29
49. Logothetis DE, Petrou VI, Adney SK and Mahajan R (2010) Channelopathies linked to
plasma membrane phosphoinositides. Pflugers Archiv European Journal of Physiology 460:321-341
Dr. Petheő Gábor OTKA pályázatokhoz csatolandó közleményjegyzéke, Created on 2/24/2011 12:00 PM
50. Ishii H, Nakajo K, Yanagawa Y and Kubo Y (2010) Identification and characterization of
Cs+-permeable K+ channel current in mouse cerebellar Purkinje cells in lobules 9 and 10 evoked by molecular layer stimulation. European Journal of Neuroscience 32:736-748
51. Donner BC, Schullenberg M, Geduldig N, H++ning A, Mersmann J, Zacharowski K,
Kovacevic A, Decking U, Aller MI and Schmidt KG (2011) Functional role of TASK-1 in the heart: Studies in TASK-1-deficient mice show prolonged cardiac repolarization and reduced heart rate variability. Basic Research in Cardiology 106:75-87
52. Storey NM, O'Bryan JP and Armstrong DL (2002) Rac and Rho mediate opposing
hormonal regulation of the ether-a-go-go-related potassium channel. Current Biology 12:27-33
1. Oertel J, Villmann C, Kettenmann H, Kirchhoff F, Becker C-. A novel glycine receptor β
subunit splice variant predicts an unorthodox transmembrane topology: Assembly into heteromeric receptor complexes. J Biol Chem. 2007;282(5):2798-807.
2. Maritzen T, Blanz J, Jentsch T. Physiological functions of the CLC chloride transport
proteins [Internet]; 2006 [cited 2011 Feb 24]. Available from: www.scopus.com.
3. Young JK, Dreshaj IA, Wilson CG, Martin RJ, Zaidi SIA, Haxhiu MA. An astrocyte toxin
influences the pattern of breathing and the ventilatory response to hypercapnia in neonatal rats. Respiratory Physiology and Neurobiology. 2005;147(1):19-30.
4. Niemeyer MI, Yusef YR, Cornejo I, Flores CA, Sepúlveda FV, Cid LP. Functional
evaluation of human ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiological Genomics. 2005;19:74-83.
5. Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion
homeostasis. Neuroscience. 2004;129(4):877-96.
6. Dixon SJ, Yu R, Panupinthu N, Wilson JX. Activation of P2 nucleotide receptors
stimulates acid efflux from astrocytes. Glia. 2004;47(4):367-76.
7. Wray S, Smith RD. Mechanisms of action of pH-induced effects on vascular smooth
muscle. Mol Cell Biochem. 2004;263(1):163-72.
8. Zhang X-, Morishima S, Ando-Akatsuka Y, Takahashi N, Nabekura T, Inoue H, et al.
Expression of novel isoforms of the ClC-1 chloride channel, in astrocytic glial cells in vitro. Glia. 2004;47(1):46-57.
1. Burton TJ, Cope G, Wang J, Sim JC, Azizan EAB, O'Shaughnessy KM, et al.
Expression of the epithelial na+ channel and other components of an aldosterone response pathway in human adrenocortical cells. Eur J Pharmacol. 2009;613(1-3):176-81.
2. Romero DG, Plonczynski MW, Welsh BL, Gomez-Sanchez CE, Ming YZ, Gomez-
Sanchez EP. Gene expression profile in rat adrenal zona glomerulosa cells stimulated with aldosterone secretagogues. Physiological Genomics. 2007;32(1):117-27.
3. Tiwari S, Packer RK, Hu X, Sugimura Y, Verbalis JG, Ecelbarger CA. Increased renal
α-ENaC and NCC abundance and elevated blood pressure are independent of hyperaldosteronism in vasopressin escape. American Journal of Physiology - Renal Physiology. 2006;291(1):F49-57.
4. Song J, Hu X, Khan O, Tian Y, Verbalis JG, Ecelbarger CA. Increased blood pressure,
aldosterone activity, and regional differences in renal ENaC protein during vasopressin
Dr. Petheő Gábor OTKA pályázatokhoz csatolandó közleményjegyzéke, Created on 2/24/2011 12:00 PM
escape. American Journal of Physiology - Renal Physiology. 2004;287(5 56-5):F1076-83.
5. Dupré-Aucouturier S, Penhoat A, Rougier O, Bilbaut A. Volume-sensitive cl- current in
bovine adrenocortical cells: Comparison with the ACTH-induced cl- current. J Membr Biol. 2004;199(2):99-111.
6. Startchik I, Morabito D, Lang U, Rossier MF. Control of calcium homeostasis by
angiotensin II in adrenal glomerulosa cells through activation of p38 MAPK. J Biol Chem. 2002;277(27):24265-73.
12: 1. Henkel AW, Welzel O, Groemer TW, Tripal P, Rotter A and Kornhuber J (2010)
Fluoxetine prevents stimulation-dependent fatigue of synaptic vesicle exocytosis in hippocampal neurons. Journal of Neurochemistry 114:697-705
2. Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N and Arbel N (2010)
VDAC, a multi-functional mitochondrial protein regulating cell life and death. Molecular Aspects of Medicine 31:227-285
3. Borowicz KK, Furmanek-Karwowska K, Morawska M, Luszczki JJ and Czuczwar SJ (2010)
Effect of acute and chronic treatment with milnacipran potentiates the anticonvulsant activity of conventional antiepileptic drugs in the maximal electroshock-induced seizures in mice. Psychopharmacology 207:661-669
4. Mayer A, Szasz BK and Kiss JP (2009) Inhibitory effect of antidepressants on the NMDA-
evoked [H-3]noradrenaline release from rat hippocampal slices. Neurochemistry International 55:383-388
5. Vidal R, Valdizan EM, Mostany R, Pazos A and Castro E (2009) Long-term treatment with
fluoxetine induces desensitization of 5-HT4 receptor-dependent signalling and functionality in rat brain. Journal of Neurochemistry 110:1120-1127
6. Bilge S, Bozkurt A, Basl DB, Aksoz E, Savli E, Ilkaya F and Kesim Y (2008) Chronic
treatment with fluoxetine and sertraline prevents forced swimming test-induced hypercontractility of rat detrusor muscle. Pharmacological Reports 60:872-879
7. Di Marzo V, Gobbi G and Szaallasi A (2008) Brain TRPV1: a depressing TR(i)P down
memory lane? Trends in Pharmacological Sciences 29:594-600
8. Drago A, De Ponti F, Boriani G, De Ronchi D and Serretti A (2008) Strategy for a Genetic
Assessment of Antipsychotic and Antidepressant-Related Proarrhythmia. Current Medicinal Chemistry 15:2472-2517
9. Mostert JP, Koch MW, Heerings M, Heersema DJ and De Keyser J (2008) Therapeutic
potential of fluoxetine in neurological disorders. Cns Neuroscience & Therapeutics 14:153-164
10. Bianchi MT (2008) Non-serotonin anti-depressant actions: Direct ion channel modulation by
SSRIs and the concept of single agent poly-pharmacy. Medical Hypotheses 70:951-956
11. Kozlovsky N, Matar MA, Kaplan Z, Kotler M, Zohar J and Cohen H (2008) The immediate
early gene Arc is associated with behavioral resilience to stress exposure in an animal model of posttraumatic stress disorder. European Neuropsychopharmacology 18:107-116
12. Sung MJ, Ahn HS, Hahn SJ and Choi BH (2008) Open channel block of Kv3.1 currents by
fluoxetine. Journal of Pharmacological Sciences 106:38-45
13. Holderbach R, Clark K, Moreau JL, Bischofberger J and Normann C (2007) Enhanced
long-term synaptic depression in an animal model of depression. Biological Psychiatry 62:92-100
14. Borowicz KK, Furmanek-Karwowska K, Sawicka K, Luszczki JJ and Czuczwar SJ (2007)
Chronically administered fluoxetine enhances the anticonvulsant activity of conventional
Dr. Petheő Gábor OTKA pályázatokhoz csatolandó közleményjegyzéke, Created on 2/24/2011 12:00 PM
antiepileptic drugs in the mouse maximal electroshock model. European Journal of Pharmacology 567:77-82
15. Takamatsu Y, Yamamoto H, Ogai Y, Hagino Y, Markou A and Ikeda K (2006) Fluoxetine as
a potential pharmacotherapy for methamphetamine dependence - Studies in mice. Cellular and Molecular Mechanisms of Drugs of Abuse and Neurotoxicity: Cocaine, Ghb, and Substituted Amphetamines 1074:295-302
16. Lenkey N, Karoly R, Kiss JP, Szasz BK, Vizi ES and Mike A (2006) The mechanism of
activity-dependent sodium channel inhibition by the antidepressants fluoxetine and desipramine. Molecular Pharmacology 70:2052-2063
17. Benjamin ER, Pruthi F, Olanrewaju S, Shan S, Hanway D, Liu XS, Cerne R, Lavery D,
Valenzano KJ, Woodward RM and Ilyin VI (2006) Pharmacological characterization of recombinant N-type calcium channel (Ca(v)2.2) mediated calcium mobilization using FLIPR. Biochemical Pharmacology 72:770-782
18. Traboulsie A, Chemin J, Kupfer E, Nargeot J and Lory P (2006) T-type calcium channels
are inhibited by fluoxetine and its metabolite norfluoxetine. Molecular Pharmacology 69:1963-1968
19. Millan MJ (2006) Multi-target strategies for the improved treatment of depressive states:
Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacology & Therapeutics 110:135-370
20. Langman NJ, Smith CGS and Whitehead KJ (2006) Selective serotonin re-uptake inhibition
attenuates evoked glutamate release in the dorsal horn of the anaesthetised rat in vivo. Pharmacological Research 53:149-155
21. Steele EC, Chen XM and MacLeish PR (2005) Fluoxetine inhibits calcium-activated
currents of salamander rod photoreceptor somata and presynaptic terminals via modulation of intracellular calcium dynamics. Molecular Vision 11:1200-1210
22. Pousti A, Deemyad T, Malihi G and Brumand K (2006) Involvement of adenosine in the
effect of fluoxetine on isolated guinea-pig atria. Pharmacological Research 53:44-48
23. Nahon E, Israelson A, Abu-Hamad S and Shoshan-Barmatz V (2005) Fluoxetine (Prozac)
interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death. Febs Letters 579:5105-5110
24. Kim HJ, Choi JS, Lee YM, Shim EY, Hong SH, Kim MJ, Min DS, Rhie DJ, Kim MS, Jo YH,
Hahn SJ et al (2005) Fluoxetine inhibits ATP-induced [Ca2+](i) increase in PC12 cells by inhibiting both extracellular Ca2+ influx and Ca2+ release from intracellular stores. Neuropharmacology 49:265-274
25. Pousti A, Deemyad T, Brumand K and Bakhtiarian A (2005) The effect of fluvoxamine on
ouabain-induced arrhythmia in isolated guinea-pig atria. Pharmacological Research 52:151-153
26. Kennard LE, Chumbley JR, Ranatunga KM, Armstrong SJ, Veale EL and Mathie A (2005)
Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. British Journal of Pharmacology 144:821-829
27. Martel F, Monteiro R, Lemos C and Vieira-Coelho MA (2004) In vitro and in vivo effect of
fluoxetine on the permeability of H-3-serotonin across rat intestine. Canadian Journal of Physiology and Pharmacology 82:940-950
28. Kobayashi T, Washiyama K and Ikeda K (2004) Inhibition of G protein-activated inwardly
rectifying K+ channels by various antidepressant drugs. Neuropsychopharmacology 29:1841-1851
29. Choi JS, Choi BH, Ahn HS, Kim MJ, Han TH, Rhie DJ, Yoon SH, Jo YH, Kim MS and Hahn
SJ (2004) Fluoxetine inhibits A-type potassium currents in primary cultured rat hippocampal neurons. Brain Research 1018:201-207
Dr. Petheő Gábor OTKA pályázatokhoz csatolandó közleményjegyzéke, Created on 2/24/2011 12:00 PM
30. Mike A, Karoly R, Vizi ES and Kiss JP (2003) Inhibitory effect of the DA uptake blocker
GBR 12909 on sodium channels of hippocampal neurons. Neuroreport 14:1945-1949
31. Choi JS, Choi BH, Ahn HS, Kim MJ, Rhie DJ, Yoon SH, Min DS, Jo YH, Kim MS, Sung KW
and Hahn SJ (2003) Mechanism of block by fluoxetine of 5-hydroxytryptamine(3) (5-HT3)-mediated currents in NCB-20 neuroblastoma cells. Biochemical Pharmacology 66:2125-2132
32. Xia Y, Gopal KV and Gross GW (2003) Differential acute effects of fluoxetine on frontal and
auditory cortex networks in vitro. Brain Research 973:151-160
33. Wang SJ, Su CF and Kuo YH (2003) Fluoxetine depresses glutamate exocytosis in the rat
cerebrocortical nerve terminals (synaptosomes) via inhibition of P/Q-type Ca2+ channels. Synapse 48:170-177
34. Hajdu P, Ulens C, Panyi G and Tytgat J (2003) Drug- and mutagenesis-induced changes in
the selectivity filter of a cardiac two-pore background K+ channel. Cardiovascular Research 58:46-54
35. Kobayashi T, Washiyama K and Ikeda K (2003) Inhibition of G protein-activated inwardly
rectifying K+ channels by fluoxetine (Prozac). British Journal of Pharmacology 138:1119-1128
36. Serafeim A, Holder MJ, Grafton G, Chamba A, Drayson MT, Luong QT, Bunce CM,
Gregory CD, Barnes NM and Gordon J (2003) Selective serotonin reuptake inhibitors directly signal for apoptosis in biopsy-like Burkitt lymphoma cells. Blood 101:3212-3219
37. Robinson RT, Drafts BC and Fisher JL (2003) Fluoxetine increases GABA(A) receptor
activity through a novel modulatory site. Journal of Pharmacology and Experimental Therapeutics 304:978-984
38. O'Shaughnessy TJ, Zim B, Ma W, Shaffer KM, Stenger DA, Zamani K, Gross GW and
Pancrazio JJ (2003) Acute neuropharmacologic action of chloroquine on cortical neurons in vitro. Brain Research 959: 280-286
39. Choi BH, Choi JS, Yoon SH, Rhie DJ, Min DS, Jo YH, Kim MS and Hahn SJ (2001) Effects
of norfluoxetine, the major metabolite of fluoxetine, on the cloned neuronal potassium channel Kv3.1. Neuropharmacology 41:443-453
40. Pellegrino TC and Bayer BM (2000) Specific serotonin reuptake inhibitor-induced
decreases in lymphocyte activity require endogenous serotonin release. Neuroimmunomodulation 8:179-187
1. Dierks A, Lichtenauer UD, Sackmann S, Spyroglou A, Shapiro I, Geyer M, et al.
Identification of adrenal genes regulated in a potassium-dependent manner. J Mol Endocrinol. 2010;45(4):193-206.
2. Gunter TE, Sheu S-. Characteristics and possible functions of mitochondrial Ca2+
transport mechanisms. Biochimica et Biophysica Acta - Bioenergetics. 2009;1787(11):1291-308.
3. Payet MD, Goodfriend TL, Bilodeau L, Mackendale C, Chouinard L, Gallo-Payet N. An
oxidized metabolite of linoleic acid increases intracellular calcium in rat adrenal glomerulosa cells. American Journal of Physiology - Endocrinology and Metabolism. 2006;291(6):E1160-7.
4. Uebele VN, Nuss CE, Renger JJ, Connolly TM. Role of voltage-gated calcium channels
in potassium-stimulated aldosterone secretion from rat adrenal zona glomerulosa cells. J Steroid Biochem Mol Biol. 2004;92(3):209-18.
5. Kigoshi T, Imaizumi N, Yoshida J, Nakagawa A, Nakano S, Nishio M, et al. Involvement
of tyrosine kinase in citrate-stimulated aldosterone production in bovine glomerulosa
Dr. Petheő Gábor OTKA pályázatokhoz csatolandó közleményjegyzéke, Created on 2/24/2011 12:00 PM
cells. American Journal of Physiology - Endocrinology and Metabolism. 2000;279(1 42-1):E140-5.
6. Tait JF, Tait SAS. Role of cAMP in the effects of K+ on the steroidogenesis of zona
glomerulosa cells. Clinical and Experimental Pharmacology and Physiology. 1999;26(12):947-55.
7. Kenyon CJ, Thomson I, Fraser R. Stimulation of aldosterone secretion by
benzodiazepines in bovine adrenocortical cells. Fundamental and Clinical Pharmacology. 1999;13(2):213-9.
8. Vinson GP, Ho MM, Puddefoot JR. Adrenocortical zonation and the adrenal renin-
angiotensin system. Endocr Res. 1998;24(3-4):677-86.
Washout Periods for Brimonidine for latanoprost ( n ؍ 17) was 4.4 ؎ 3.2 weeks ( P ؍ .24). 0.2% and Latanoprost 0.005% In all but one patient, brimonidine returned to baseline by 5 weeks and latanoprost returned by 8 weeks. William C. Stewart, MD, Keri T. Holmes, and CONCLUSION: After discontinuing latanoprost or bri- Mark A. Johnson monidine, a wide variation exist
3/2. Multiple Choice The following questions have one or more correct answers. Use the notations given below: A: only the 1st , 2nd and 3th are correct B: only the 1st and 3th are correct C: only the 2nd and 4th answers are correct D: only the 4th answers is correct E: all of the answers are correct 131. Choose the compounds whose UV spectra display a significant shift u